آوینا

ریاضی ششم. فصل اول ریاضی ششم

مساحت گسترده استوانه زیر چند سانتی متر مربع است؟

جواب ها

برای محاسبه مساحت گسترده‌ استوانه، که شامل دو دایره (پایه‌ها) و یک مستطیل (سطح جانبی) است، از فرمول زیر استفاده می‌کنیم: مساحت کل = ۲ × مساحت دایره + مساحت مستطیل ۱. **مساحت دایره**: مساحت یک دایره با شعاع \( r \) برابر است با \( \pi \times r^2 \). در اینجا، شعاع \( r = 5 \) سانتیمتر است. \(\text{مساحت یک دایره} = \pi \times 5^2 = 25\pi \) بنابراین مساحت دو دایره برابر است با \( 2 \times 25\pi = 50\pi \). ۲. **مساحت مستطیل**: طول مستطیل برابر با محیط دایره پایه و عرض آن برابر با ارتفاع استوانه است. محیط دایره = \( 2\pi r = 2\pi \times 5 = 10\pi \) عرض مستطیل (ارتفاع استوانه) = 9 سانتیمتر. مساحت مستطیل = طول × عرض = \( 10\pi \times 9 = 90\pi \) ۳. **مساحت کل**: \( \text{مساحت کل} = 50\pi + 90\pi = 140\pi \) با جای‌گذاری \(\pi \approx 3.14\): \( 140\pi \approx 140 \times 3.14 = 439.6 \) بنابراین، مساحت گسترده‌ی استوانه تقریباً ۴۳۹.۶ سانتی‌متر مربع است.

سوالات مشابه فصل اول ریاضی ششم

Ad image

جمع‌بندی شب امتحان فیلیمومدرسه

ویژه اول تا دوازدهم

ثبت نام